Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Transl Immunology ; 10(3): e1261, 2021.
Article in English | MEDLINE | ID: covidwho-1135089

ABSTRACT

OBJECTIVES: Circulating antibodies are important markers of previous infection and immunity. Questions remain with respect to the durability and functionality of SARS-CoV-2 antibodies. This study explored antibody responses in recovered COVID-19 patients in a setting where the probability of re-exposure is effectively nil, owing to New Zealand's successful elimination strategy. METHODS: A triplex bead-based assay that detects antibody isotype (IgG, IgM and IgA) and subclass (IgG1, IgG2, IgG3 and IgG4) responses against Nucleocapsid (N) protein, the receptor binding domain (RBD) and Spike (S) protein of SARS-CoV-2 was developed. After establishing baseline levels with pre-pandemic control sera (n = 113), samples from PCR-confirmed COVID-19 patients with mild-moderate disease (n = 189) collected up to 8 months post-infection were examined. The relationship between antigen-specific antibodies and neutralising antibodies (NAbs) was explored with a surrogate neutralisation assay that quantifies inhibition of the RBD/hACE-2 interaction. RESULTS: While most individuals had broad isotype and subclass responses to each antigen shortly after infection, only RBD and S protein IgG, as well as NAbs, were relatively stable over the study period, with 99%, 96% and 90% of samples, respectively, having responses over baseline 4-8 months post-infection. Anti-RBD antibodies were strongly correlated with NAbs at all time points (Pearson's r ≥ 0.87), and feasibility of using finger prick sampling to accurately measure anti-RBD IgG was demonstrated. CONCLUSION: Antibodies to SARS-CoV-2 persist for up to 8 months following mild-to-moderate infection. This robust response can be attributed to the initial exposure without immune boosting given the lack of community transmission in our setting.

2.
PeerJ ; 8: e9863, 2020.
Article in English | MEDLINE | ID: covidwho-782434

ABSTRACT

BACKGROUND: Serological assays that detect antibodies to SARS-CoV-2 are critical for determining past infection and investigating immune responses in the COVID-19 pandemic. We established ELISA-based immunoassays using locally produced antigens when New Zealand went into a nationwide lockdown and the supply chain of diagnostic reagents was a widely held domestic concern. The relationship between serum antibody binding measured by ELISA and neutralising capacity was investigated using a surrogate viral neutralisation test (sVNT). METHODS: A pre-pandemic sera panel (n = 113), including respiratory infections with symptom overlap with COVID-19, was used to establish assay specificity. Sera from PCR­confirmed SARS-CoV-2 patients (n = 21), and PCR-negative patients with respiratory symptoms suggestive of COVID-19 (n = 82) that presented to the two largest hospitals in Auckland during the lockdown period were included. A two-step IgG ELISA based on the receptor binding domain (RBD) and spike protein was adapted to determine seropositivity, and neutralising antibodies that block the RBD/hACE­2 interaction were quantified by sVNT. RESULTS: The calculated cut-off (>0.2) in the two-step ELISA maximised specificity by classifying all pre-pandemic samples as negative. Sera from all PCR-confirmed COVID-19 patients were classified as seropositive by ELISA ≥7 days after symptom onset. There was 100% concordance between the two-step ELISA and the sVNT with all 7+ day sera from PCR­confirmed COVID-19 patients also classified as positive with respect to neutralising antibodies. Of the symptomatic PCR-negative cohort, one individual with notable travel history was classified as positive by two-step ELISA and sVNT, demonstrating the value of serology in detecting prior infection. CONCLUSIONS: These serological assays were established and assessed at a time when human activity was severely restricted in New Zealand. This was achieved by generous sharing of reagents and technical expertise by the international scientific community, and highly collaborative efforts of scientists and clinicians across the country. The assays have immediate utility in supporting clinical diagnostics, understanding transmission in high-risk cohorts and underpinning longer­term 'exit' strategies based on effective vaccines and therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL